Exam Algebraic Structures, July 12th, 2019, 9.00am-12.00am, NB 5113.0201.
Please provide complete arguments for each of your answers. The exam consists of 3 questions each subdivided into 4 parts. You can score up to 3 points for each part, and you obtain 4 points for free.
In this way you will score in total between 4 and 40 points.
(1) In this exercise we denote, for any $n \in \mathbb{Z}$, the ring $\mathbb{Z}[t] /\left(t^{2}-n\right)$ by R_{n}. Elements of R_{n} we write as $f(t) \bmod \left(t^{2}-n\right)$, given any $f(t) \in \mathbb{Z}[t]$.

- (a) Show $(t+1) \bmod \left(t^{2}-n\right) \in R_{n}^{\times} \Longleftrightarrow n \in\{0,2\}$.
-(b) Show that R_{n} is an integral domain if and only if n is not a square in \mathbb{Z}.
(c) Show that R_{n} contains a nilpotent element different from the zero element if and only if $n=0$.
(d) Show that $R_{2} \cong \mathbb{Z}[\sqrt{2}]$, and prove that this ring is a Euclidean domain, with function $g: \mathbb{Z}[\sqrt{2}] \rightarrow \mathbb{Z}_{\geq 0}$ given by $g(n+m \sqrt{2})=\left|n^{2}-2 m^{2}\right|$.
(2) Let $\alpha \in \mathbb{R}$ be a root of the equation $x^{2}+3 x=1$ and consider the ring $\mathbb{Z}[\alpha]:=\{a+b \alpha \mid a, b \in \mathbb{Z}\} \subset \mathbb{R}$.
(a) Show that $N: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}$ given by $N(a+b \alpha)=a^{2}-3 a b-b^{2}$ is multiplicative; i.e., $N(x y)=N(x) N(y)$ for $x, y \in \mathbb{Z}[\alpha]$.
(b) Show that $\varphi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z} / 3 \mathbb{Z}$ is a ring homomorphism with kernel the ideal generated by 3 and $\alpha-1$.
(c) Show that the ideal given in (b) is a principal ideal and moreover that it is maximal.
(d) Is $\alpha-2 \in \mathbb{Z}[\alpha]$ irreducible?
(3) This final exercise considers a finite field.
(a) List all irreducible elements in $\mathbb{F}_{2}[t]$ of degree ≤ 2 (explain why your list is complete!).
(b) Show that $t^{5}+t+1 \in \mathbb{F}_{2}[t]$ is reducible and $t^{5}+t^{2}+1 \in \mathbb{F}_{2}[t]$ is irreducible.
(c) Show that $\mathbb{F}_{2}[t] /\left(t^{5}+t^{2}+1\right)$ is a field and determine the inverse of $t^{3} \bmod \left(t^{5}+t^{2}+1\right)$ in this field.
(d) Determine the minimal polynomial of $t^{3} \bmod \left(t^{5}+t^{2}+1\right)$ over \mathbb{F}_{2}.

